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Abstract—Binary quantization, aiming to binarize weights and
activations in Neural Networks into 1-bit values, greatly reduces
memory usage and computing costs. Previous methods constrain
the binarized values to a fixed set of learnable values. In this
report, we first model the binary quantization into a convex
optimization problem, which provides a better view to understand
previous methods. Then we propose a two-stage Expectation
Maximization style framework and a one-stage method after ap-
proximation. Experimental results demonstrate the effectiveness
of the modeling process and the proposed methods.

Index Terms—Binary Quantization, Convex Optimization, Ex-
pectation Maximization

I. INTRODUCTION

Deep Neural Networks (DNNs) have shown great learning
capacity in various tasks including computer vision [1], natural
language processing [2], and speech processing [3]. However,
heavy computing costs and memory usage make it difficult
to deploy on edge devices. Therefore, model quantization [4],
which aims to present the weights and activations with lower
bits, has gained more and more attention.

Binary quantization, which binarizes weights and activations
into 1-bit values, can effectively reduce memory usage and
computing costs. For 1-bit values, we can further employ the
XNOR and BitCount operations to speed up the computing
process. Previous methods adapt the sign function to binarize
weights and activations [5], [6]. Adabin [7] adaptively obtains
the optimal binary sets {b1,b2} (b1,b2 € R) of weights and
activations for each layer instead of a fixed set (i.e., {—1,+1}).
The key is to increase the representation ability for binarized
features.

In this report, we first model the binarizing process as
a convex optimization problem. The object is to reduce the
gap between the output from original weights and binarized
weights, under the constraint that binarized weights consist
of two values. We design a novel two-stage Expectation
Maximization style method to tackle the problem. Meanwhile,
we employ the approximation of maximum operation to con-
vey the problem into one differential unconstrained problem.
Therefore, we can apply the traditional methods to solve
this one-stage problem. Experimental results demonstrate the
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effectiveness of the modeling process and proposed one-stage
and two-stage methods.
The main contributions of this report are as follows:

o We model the binary quantization into one convex opti-
mization problem.

o We propose a novel two-stage Expectation Maximization
style method. Meanwhile, we employ the approximation
of maximum operation to solve the problem in a one-
stage paradigm.

o We perform experiments and thus prove the effectiveness
of the modeling process and proposed methods.

II. RELATED WORK

Binary Neural Networks (BNNs) aim to represent the acti-
vations and weights with 1-bit values. The sign function is
widely employed for binarization [5]. However, traditional
backward propagation can not work as the derivation result
of the sign function is 0. Straight-through Estimator (STE)
[8] is employed to approximate the gradients. Based on the
basic frameworks, the follow-up methods can be categorized
into 1) minimizing the quantization error; 2) improving the
loss function; 3) improving the gradient approximation; and
4) designing novel network topology structures.

To minimize the quantization error, Xnor-NET [9] adapt the
channel-wise scaling factor and weights. Adabin [7] obtains
the optimal binary sets instead of 0/1. For loss function,
the key is to add regularization losses or alignment losses.
ReActNet [10] designs a standard logit matching loss for atten-
tion transfer between BNN and original networks. Meanwhile,
ReActNet designs ReAct-Sign and ReAct-PReLU to reshape
and shift the activation distributions. LCR [11] retains the
Lipschitz constant as a regularization term. For the gradient
approximation, FDA [12] decomposes sign the Fourier Series.
Nevertheless, these improvements can be combined to better
optimize the quantization process. We refer the readers to [13]
for more details.

In this report, we learn the adaptive binary sets and
model the quantization process into one convex optimization
problem. Also, we employ the approximation of maximum
operation to make the objective function differential.



ITII. MODEL

For the weight W € R%*92 and binarized weights W& ¢
R% %42 where WlQJ € {a,b},a € R,b € Rja < bVl <i<
di,1 < j < ds, the target is to minimize the error under input

X € R=;

minimize LOWX, W?X) (1)
We can get two intuitive targets:
di do
Ly(WX,WOX) =[O Wi X, - ZWQX )
=1 j=1
and
d1 d2
Lo(WX, WOX) =N "W, X; - W2X,)? (3
i=1 j=1

L, aims to align the values of the dot product, while Lo
aims to align each product. Theoretically, £; equals Lo plus
some covariance items. Since L, is easy to decompose, we
select £, as our optimization target in this report.

Therefore, we can get our optimization problem as:

d1 dg
. . Q 2
]\gzbnl\mf/z(gn ZZ(WMXj - W5 X;5)
1=1j5=1 (4)
st (W —a)(W? —b) =0
a€R,bER

This problem is a typical constraint optimization problem.
Since the formula is quadratic, we can easily get that it is
convex considering W€, a, and b.

Consider (W, ;X; — Wi%Xj)Q, we can rewrite it as
Xz(Wi; — Wsz)2 Therefore, we can get one simple optimal

solution: ,
« if W, ., < ath
W =0 h T = 5)
J b otherwise
Thus, we get the optimization problem as:
1 2
MZ’H,ZZ Wi’ij - WZ%X])z
=1 j=1
b
st W = aif Wy < a; ©6)
b
W =bitwi, >

aER,bER
However, such a format is not differentiable. Indeed, the
target is:
d1 d2

MznZZmln —a)?,

1=1 j=1

st.ae R,beR

Now, we can apply the continuous approximation of the
maximum function:

—0)*)X;}

(o T

log(exp(T * z) + exp(T * y))
T

max(z,y) ~

®)

where T is a scale factor if |a — b| is small. The larger the
gap between T * a and T = b, the better the approximation.
Therefore, we can get the approximation of the minimum
function:

log(exp(T * —x) + exp(T x —y))
T

Put the Equation 9 into Equation 7, we get final differential
unconstrained problem:

min(z,y) ~ —

(©))

di  d2

. 2 2\ 12
J\g’zbn;_zlg((w a)”, (Wi ; —b)°)X;
1=1 j=
st.aeR,bER (10)
1 T * — T % —
where g(z,y) = — og(exp(T x;ﬁ exp(T' * —y))
TeR
IV. ALGORITHM
Indeed, the object is
d1 d2
Min Min SN (WX - WEX;)?
=1 ] 1 (11)
st (W —a) (WS —b) =0
a€eR,bER

It is a two-stage optimization:

o step 1: select the WQJ to be @ or b to get the minimum.
« step 2: find proper a and b to minimize the minimum in
step 1.

For L5, we can easily find the optimal point after decom-
posing it. However, for £, it is composed and hard to find
the optimal point under one specific group of a and b.

For the two-stage object, we then propose a novel Expecta-
tion Maximization style method to tackle the problem. The key
idea is to alternately perform step 1 and step 2. Specifically,
we optimize the strategy to decide WlQ] based on initialized a
and b. Then we try to find the best a and b under this grouping
strategy. After that, we start the recursive process to repeat step
1 to group W under found a and b. The details can be found
in 1. Opt denotes the optimization methods such as Newton’s
descending method.

Algorithm 1: General Two-stage Framework

Data: Threshold e, Interface d
Result: Optimal a and b

1 d + medium of W

2 while error > ¢ do

3 | foreach WQ € We do

4 WQealfW <delseb;

5 end

6 a,b,error < Opt(W?, X) ;

7 d <+ “T”’ ;

8




In this report, we introduce the approximation of the mini-
mum function to merge two steps. After that, we can directly
optimize ¢ and b. Therefore, the only thing is to directly apply
the optimization method to the object in Equation 10.

V. EVALUATION

A. Data

For the test, we select the real value W € R10*8% and
feature X € R®* from the last layer of LeNet-5 [14]. Figure
1 shows the density distribution of /. We can see that the
distribution is roughly symmetric around 0.
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Fig. 1. Density distribution of W.

B. Optimization Methods
In this report, we propose two frameworks to solve the
problem.

o one-stage: optimize Equation 10.

o two-stage: optimize Equation 6 following Algorithm 1.

For the optimization methods, we employ the 1) Newton’s
method and 2) Ellipsoid method. The gradient under the one-
stage framework is:

d d 2eT'(Wi’J'7a)2X]2 (a—Wi;)

gone(a) = Zl Zl el (Wij—a)® 4 oT-(Wi;—b)* (12)
=1 j=
di da o T (Wi ;=022 . (b _ TV, .
2e GTOTXE (b= W)
— J 2,7
Gone(B) = lel eT-(Wij—a)® 4 oT-(Wi;—b)? (13)
=1 j=
The gradient under the two-stage framework is:
G a+b
Grwo(@) = N =2x(Wi; X; —aX;)X; - I(W; ; < )
i=1 j=1
(14)
d1 d2 a+ b
Grwo(b) =D D =25 (Wi ; X; —bX;) X, - I(W; 5 > )
i=1 j=1

(15)
where the I denotes the indicator function.

C. Main Results

During testing, we set the threshold ¢ as le-6 and train
10000 interactions with early-stop. For one-stage algorithms,
the 7" is 100.

Ellipsoid Method. We visualize the ellipsoid for the first
25 interactions and the coverage points. As shown in Figure
2 and Figure 3, we can see that both one-stage and two-stage
algorithms coverage.
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Fig. 2. First 25 ellipsoids and coverage points for one-stage algorithm.
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Fig. 3. First 25 ellipsoids and coverage points for the two-stage algorithm.

Convergence. We plot the losses during the training process

in Figure 4. The conclusions are as follows:

o Both one-stage methods and two-stage methods out-
perform the Adabin, indicating the effectiveness of the
modeling process. Meanwhile, both Newton’s method and
the Ellipsoid method converge well and get better results
than Adabin.

o For both Newton’s method and the Ellipsoid method, the
one-stage framework converges to better results. It shows
the effectiveness of the proposed approximation.



o Newton’s method coverage faster than the Ellipsoid
method for both the one-stage framework and the two-
stage framework.

o For the Ellipsoid method, the loss sometimes gets larger.
It consists of the conclusion that the Ellipsoid method is
not a descent method.

220
—— Newton one stage
Newton two stage
200 T
—— Ellipsoid one stage
—— Ellipsoid two stage
1807 ---- AdaBin
3
o 160 1
—
140
120
- p ——
100
0 5 10 15 20 25 30 35
Iterations

Fig. 4. The training losses for baseline and proposed methods.

Optimal ¢ and b. We list the optimal a, b and corresponding
points binarized to a or b. As shown in Table I, we can observe
that Adabin would get a symmetric group of a and b, and
thus the interface is around 0.001. Both one-stage and two-
stage methods get a left shift for the interface. Meanwhile, for
the one-stage framework, Newton’s method and the Ellipsoid
method converge to the same optimal point. However, for the
two-stage framework, they converge to the different optimal
points as the coupling of the two stages may mislead the
learning process to the local minima.

TABLE I
THE CONVERGED a AND b FOR BASELINES. #P MEANS THE NUMBER OF
POINTS WHICH ARE BINARIZED TO a OR b. | DENOTES THE ONE-STAGE
METHOD AND II DENOTES THE TWO-STAGE METHOD.

o When T increases, the Ellipsoid method would get better
results, while Newton’s method gets worse at T' = 300.
This indicates that the Ellipsoid method is more robust.
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Fig. 5. The coverage losses for one-stage Newton’s method and one-stage
Ellipsoid method under different 7'

Robustness towards noisy gradient. To study the robust-
ness towards noisy gradients, we add some Gaussian noise
to the gradients. As shown in Table II, we can conclude that
Newton’s method is more robust to the noise and the Ellipsoid
method can not converge with larger noise. Meanwhile, the
one-stage method is more robust than the two-stage method.

TABLE I
PERFORMANCE OF THE PROPOSED METHOD WHEN ADDING VARIOUS
NOISES TO THE GRADIENTS. FOR THE NOISE, THE VARIANCE CHANGES
FROM 0.1 TO 0.5. I DENOTES THE ONE-STAGE METHOD AND II DENOTES
THE TWO-STAGE METHOD. NAN MEANS THAT THE METHOD IS

DIVERGENT.
Method 0 0.01 0.1 0.5 1.0 1.3
Newton I 101.5 1015 1015 1015 1015 1015
Newton II 102.0 102.0 102.0 102.0 102.0 NaN
Ellipsoid I 101.5 1015 1015 1015 NaN NaN
Ellipsoid II | 102.0 102.0 102.0 NaN NaN NaN

Method a b Interface #Ptoa #Ptob

Adabin [7] | -0.0771 0.0774  -0.0008 420 420

Newton I -0.1312  0.1161 -0.0075 360 480

Newton II -0.1276  0.1248 -0.0014 411 429

Ellipsoid I -0.1312  0.1161 -0.0075 360 480

Ellipsoid T | -0.1284  0.1241 -0.0021 408 432
D. Analysis

Impact of 7. To study the impact of 7" on the one-stage
algorithms, we change 7' from 50 to 200. The results are
shown in Figure 5. We can conclude that:

e As the T increases, the losses would be lower for
both Newton’s method and the Ellipsoid method. In the
approximation, a larger 7" would lead to a smaller gap.

VI. CONCLUSION

In this report, we model the binarizing process as a convex
problem and design a two-stage algorithm to solve this prob-
lem. Furthermore, we employ the approximation of maximum
function and convey it into one differential unconstrained
problem. Therefore, we propose a novel one-stage framework.
Experimental results prove the effectiveness of the modeling
process and proposed methods.

For future work, we can consider the binarizing process of
activation functions. Also, how to guarantee the performance
of more than one layer is an interesting topic.
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