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Abstract

This report presents a unified view of the atten-
tion mechanism and Mixture of Experts (MoE),
highlighting their structural similarities. Both
mechanisms compute a weighted sum over a
set of candidates—tokens for attention and ex-
perts for MoE—based on dynamically com-
puted probability distributions. We formalize
this similarity as ∑ f(x) ⋅ g(x), where f(x)
represents weights and g(x) represents values
to aggregate. While attention captures token-
to-token interactions, MoE focuses on input-
to-expert interactions, with MoE typically ac-
tivating only a subset of the experts. We also
discuss advancements like sparse attention and
enhanced MoE routers, which further bridge
the gap between these paradigms. By unifying
these concepts, we aim to foster a deeper under-
standing of their interplay and inspire further
innovation in these mechanisms.

1 Preliminary

Attention (Vaswani, 2017) mechanism has been
widely used in the Transformer, which shows
promising abilities in natural language processing
(NLP) and computer vision (CV) tasks. At the
same time, Mixture of Experts (MoE) (Fedus et al.,
2022; Bi et al., 2024) has emerged as a popular so-
lution for larger LLMs, enabling parameter scaling
while maintaining computational efficiency.

In this report, we provide a unified view of at-
tention and MoE, viewing them as mechanisms
that compute a weighted sum over a set of candi-
dates (tokens or experts) based on a dynamically
computed probability distribution.

1.1 Attention Mechanism
Let X = {xi}Mi=1 ∈ RM×d be the representations of
the sequential tokens xi ∈ R1×d for i = 1, 2, ...,M .
For each token xi, the Attention mechanism com-
putes a weighted sum over all tokens in the se-
quence:

yi =
M

∑
j=1

aij ⋅ vj (1)

where we have:

• vj = xjWv ∈ R1×d is the value vector for
token xj , with Wv ∈ Rd×d being a learnable
weight matrix.

• aij is the attention coefficient between token
xi and token xj , computed as:

aij =
exp(qik⊤j )

∑M
j ′=1 exp(qik⊤j ′ )

. (2)

Here, qi = xiWq is the query vector for token
xi, and kj = xjWk is the key vector for to-
ken xj , with Wq,Wk ∈ Rd×d being learnable
weight matrices.

The attention coefficients aij represent the im-
portance of token xj to token xi, and the output
yi is a context-aware representation of token xi.
In summary, the attention mechanism first calcu-
lates a probability distribution over tokens and then
aggregates the information.

1.2 Mixture of Experts (MoE)

For the given input xi, the MoE mechanism com-
putes a weighted sum over a subset of experts se-
lected via a Top-K operation (Fedus et al., 2022)
or ReLU operation (Wang et al., 2024). Let N be
the total number of experts. For token i, MoE first
computes the router scores for all experts:

ri,l = Router(xi) = xiWl for l = 1, 2, . . . , N
(3)

where Wl ∈ Rd×N and ri,l denote the score of
token i towards expert l. Then, we define the Top-K



binary mapping function m = [m1,m2, . . . ,mN],
where:

mi,l = {1 if expert l is in the Top-K experts,
0 otherwise.

(4)
Therefore, we can compute the activation coeffi-
cients for the selected experts using the softmax
function:

pi,l = mi,l ⋅
exp(ri,l)

∑N
l′=1mi,l′ exp(ri,l′)

(5)

Meanwhile, if we replace the softmax+Top-K with
ReLU function(Wang et al., 2024), it equals

p
∗
i,l = ReLU(ri,l) (6)

Finally, we can compute the weighted sum over the
outputs of the selected experts:

yi =
N

∑
l=1

pi,l ⋅ hl(xi) (7)

where hl(xi) is the output of expert l for input xi.

2 Unified View

2.1 Formulation
Comparing (1) and (7), we can conclude that both
attention and MoE share a similar structure:

∑ f(x) ⋅ g(x), (8)

where f(x) are the weights and g(x) are the values
to aggregate. For the attention mechanism, f(x) is
the attention distribution among input tokens, and
g(x) is the linear projection of the input. For the
MoE, f(x) is the learned weights among experts,
and g(x) is the outputs of experts.

2.2 Similarity
From a single-input perspective, both attention and
MoE share the following structure.

Coefficient Computation. In Attention, the co-
efficients aij are computed using a softmax over
the dot product of queries and keys, which are de-
rived from the input tokens xi and xj . In MoE,
the coefficients pl are computed using a softmax
over the router’s scores, which are derived from
the input x, but only for the Top-K selected experts
(as indicated by the binary mapping ml). Recently,
ReMoE (Wang et al., 2024) proposes to calculate
the coefficients using ReLU to replace the Top-K
selection.

Weighted Sum. In Attention, the weighted sum
is over the values vj corresponding to tokens xj . In
MoE, the weighted sum is over the outputs hl(xi)
of the Top-K selected experts. Both mechanisms
employ the weighted sum operation.

Dynamic Selection. Both mechanisms dynami-
cally select relevant candidates (tokens or experts)
based on the input.

2.3 Differences

The key differences lie in the scope of the candi-
dates and the selection mechanism.

Scope. In Attention, the candidates are tokens
within a sequence, and the coefficients capture
token-to-token interactions. In MoE, the candidates
are experts, and the coefficients capture input-to-
expert interactions.

Selection Mechanism. In Attention, all tokens
are typically considered (though sparse attention
variants exist). In MoE, only the Top-K experts are
activated, as enforced by the binary mapping mi,l.
In ReMoE, a sparsity loss is proposed to ensure
only a subset of the experts are activated.

2.4 Rethinking Variants

Given the unified view, we can rethink the variants
of attention and MoE.

The sparse attention (Child et al., 2019; Beltagy
et al., 2020; Xiao et al., 2023) is quite similar to the
MoE router. In sparse attention, the model dynami-
cally selects a subset of tokens to attend to based
on the positional priority, rather than computing at-
tention scores for all possible pairs of tokens. This
is particularly useful in handling long sequences,
where the quadratic complexity of full attention
becomes prohibitive. Similarly, in MoE architec-
tures, the router dynamically assigns input tokens
to a subset of expert networks, each specialized
in processing different types of inputs. This selec-
tive processing allows the model to scale efficiently
with larger datasets and more complex tasks.

In MoE, the router can be enhanced by aggre-
gating information from other tokens (Wu et al.,
2024), following the same idea as attention. In
Yuan 2.0-M32 (Wu et al., 2024), an attention router
is designed to consider the correlation between ex-
perts, resulting in higher accuracy compared to the
classical router structure.
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